Table 2. Observed and calculated structure factors for Yb₃Ge₅

a, ^o	Fc	F _o	hkl	a,°	F _c	F	hkt
233.71	152-9	157.8	221	180.00	19-9	26.9	010
351.04	86.1	90-1	231	180-00	14.0	25.2	020
275-46	61.9	54.6	241	0.00	226-2	219.4	030
343-86	80.2	78-2	331	180.00	7.5	0.0	040
0.00	289.0	235.0	002	0.00	69-1	64.1	050
180.00	17.6	19.6	012	133-09	122-2	133-4	110
180.00	9+4	15-7	022	343-88	98+4	107.0	120
0.00	198-4	1.97.0	032	127-78	61.6	64.8	130
180.00	9.9	0.0	042	93:10	97-1	100.9	140
130-90	108+4	112-9	112	252-15	77.5	85.6	150
243-20	3.3*1	88.7	(22	249-46	12913	132.8	330
138151	5519	58.4	1.32	79569	59-2	64.3	230
94-31	8955	90+2	143	228+53	8291	90·0	240
249.65	116.1	:16.0	233	1.5*61	12755	136-6	330
77-49	5212	53.5	232	0.00	51-1	58.8	001
0.00	5210	5014	000	130.00	10.1	1519	011
130-00	10.0	14.0	013	0.00	HT-6	100.7	021
0.00	65.6	6:22	023	0.00	7953	84-3	031
1:00-00	6913	6.6.2	03.3	130.00	71.0	81.7	041
130-31	1.017	17019	11<	0.00	78-5	78-2	051
358543	35-9	.050	123	119926	203.6	313-3	11:
(26)43	4610	445	133	5175	4316	56*3	131
230-45	127-4	126+5	223	127.88	36-4	37-9	131
0.00	202.0	185-1	004	138-58	147.0	152+5	141

MAYER, I. P., BANKS, E. & POST, B. (1962). J. Phys. Chem. 66, 693.

SMITH, G. S. & ALEXANDER, L. E. (1963). Acta Cryst. 16, 462.

TEATUM, E., GSCHNEIDNER, K., JR. & WABER, J. (1959). Los Alamos Scientific Laboratory, Report No. LA 2345.

THARP, A. G. (1962). J. Phys. Chem. 66, 758.

THOMSON, J. R. (1963). Acta Cryst. 16, 320.

Table 3. Interatomic distances Å for Yb3Ge5

The e.s.d.'s include only the uncertainties in the positional parameters.

Yb-4 Ge(2) -4 Ge(1) -2 Ge(2) -4 Yb -2 Yb	3.015 ± 0.006 Å 3.016 ± 0.002 3.356 ± 0.021 3.778 ± 0.005 4.166
Ge(1) - 3 Ge(2) - 6 Yb - 3 Ge(1)	$\begin{array}{c} 2\cdot585\pm0.017\\ 3\cdot016\pm0.002\\ 3\cdot928\end{array}$
$\begin{array}{r} \text{Ge(2)} - 2 \ \text{Ge(1)} \\ - 2 \ \text{Ge(2)} \\ - 4 \ \text{Yb} \\ - 2 \ \text{Yb} \end{array}$	$\begin{array}{c} 2 \cdot 585 \pm 0 \cdot 017 \\ 2 \cdot 979 \pm 0 \cdot 044 \\ 3 \cdot 015 \pm 0 \cdot 006 \\ 3 \cdot 356 \pm 0 \cdot 021 \end{array}$

Acta Cryst. (1965). 18, 1086

The rate of refinement of coordinates for the minimum residual method in three dimensions. By E. STANLEY, Department of Physics, University of Saskatchewan, Regina Campus, Regina, Saskatchewan, Canada

(Received 2 November 1964)

Bhuiya & Stanley (1963) proposed a method of refinement in which each parameter, u_j , is varied in turn from $u_j - n\Delta u_j$ to $u_j + n\Delta u_j$ in 2n increments of Δu_j . The lowest value of the residual, $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$, within the range of variation is noted and the corresponding value of u_j is taken as the best value of the parameter within the permitted range of variation. This method has worked very well in twodimensional studies and the rate of refinement in two dimen-

sions has been studied in detail by Stanley (1964) who showed that, for small errors, the rate of refinement could be related to the average error in the coordinates on the basis of the figures given by Luzzati (1952) for the residual as a function of error in coordinates and sin θ .

Tables 1 and 2 give values of the residual R for centrosymmetric and non-centrosymmetric space groups, for three-dimensional data, as a function of the standard devi-

Table 1. Values of $(\bar{1})R$ as a function of $\sigma(r)$ and B

$\sigma(r)$	0.0	1.0	2.0	3.0	щ. О	5.0	ń. 0	7.0	8.0	9.0	10.0
0.00	0.000	0.000	0.000	0.000	0.000	0,00+)	0,000	0.000	0.000	0.000	0.000
0.02	0.114	0,109	0.105	0.100	0.096	0.092	0.088	0.084	0. 080	0.077	0.074
0.04	0,219	0,211	0,202	0.194	0.186	0.177	0.140	0.162	0.166	0.149	0.1+3
0,06	0.314	0.302	0,291	0.291	0.208	0.256	0.246	0.235	0. 226	0. 217	0,209
0.08	0,398	0.384	0.370	0.356	0.342	0.328	0.315	0.302	0.291	0. 280	0.270
0.10	0.471	0,456	0.439	0.424	0. +08	0.393	0.378	0.363	0.350	0. 337	0.326
0.12	0.534	0,518	0.501	0.484	0.460	0	0.433	0. +18	0.403	0.390	0.377
0.14	0.587	0,570	0.553	0.535	0.517	0.500	0.483	0.467	0,451	0	0.423
0.16	0.630	0.614	0.597	0.579	0.551	0.5++	0.526	0.510	0.494	0. 119	0,465
0.18	0.667	0.651	0.65+	0.010	0.599	0.582	0.564	0.548	0.532	0.517	0.503
0.20	0.696	0.681	0.665	0.648	0.631	0.614	0.597	0.581	0.565	0,551	0,536
0. 22	0.720	0.905	0.690	0.674	0.658	0.6+2	0.6%6	0.610	0,595	0.580	0.566
0.24	0.738	0.725	0.711	0.696	0.681	U. 665	0.650	0,635	0.620	0.606	0.592
0.26	0.752	0.940	0.727	0.714	0.700	0.685	0.671	0.657	0.643	0.629	0.616
0,28	0.964	0.753	0.741	0.729	0.716	0.702	0.689	0.676	0.663	0.650	0.637
0.30	0. 772	0.763	0.752	0.741	0.729	0.117	0. r0+±	0.692	0.679	0.667	0.656
0.32	0.780	0.771	0.762	0.751	0.740	0,129	0.117	0, 106	0.694	0.683	0.672
0.34	0.786	0.778	0.769	0.760	0.750	0.135	0.729	0.718	0.707	0.696	0, 686
0.36	0.791	0,784	0.776	0.767	0,758	0.749	0.139	0.729	0.719	0. 109	0.048
0.30	0.755	0.788	0.781	0.773	0.165	0. 756	0.141	0.738	0.729	0.720	0,711
0. +0	0.758	0.793	0.786	0.779	0.771	0.763	0.155	0.746	0.738	0.180	0, 721
0.42	0.801	0.796	0.480	0.786	0.777	0.769	0,761	0.754	0.746	0.738	0.730
0.4+	0,804	0.799	0.794	0.788	0.781	0.775	0.701	0.760	0.753	0.705	0.738
0.46	0.807	0.80%	0. 197	0.791	0.785	0.119	0.773	0.766	0,759	0.752	0.745
0.48	0.809	0,805	0,800	0.795	0.789	0.783	0.777	0.771	0.764	0.758	0.752
ົາ, 50	0.817	0,807	0.802	0.798	0,792	0, 181	0,781	0,775	0,770	0,763	J. 757

Table 2. Values of (1)R as a function of $\sigma(r)$ and B

	B											
σ	(0)	0.0	i.0		<u>.</u> 0	4.0	5.0	6.0	1.0	8.0	_ 9. 0	<u> </u>
	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000
	0.02	0.073	0,070	0,068	0,065	0.065	0.059	0,056	0.054	0.051	0.049	0.047
	0.04	0.1.4	0.138	0.132	0,127	0,121	0.116	0.110	0.106	0.101	0.097	0.093
	0.06	0.211	0,203	0.195	0.187	0.179	0.171	0.163	0.156	0.149	0.1.3	J. 137
	0.08	0.812	0.262	0.252	0, 242	0.232	0. 222	0.213	0.204	0.195	0.187	0,180
	0,10	0,325	0.314	0,303	0, 291	0,280	0.263	8ر.پ •0	0. <1	0,238	0.229	0, 220
	0.12	0.370	0.359	0.346	0.334	0.322	0.310	0,298	0.287	0,276	0.266	0.257
	0,14	0.409	0.397	0.384	0.371	0.359	0.346	0.334	0.322	0.311	0.300	0, 290
	0.16	0.441	0.489	0,416	0.404	0.391	0. 378	0.365	0.353	0.3+2	0.331	0.321
	0.18	0.467	0.456	0.443	0.431	0.418	0. ±05	0.398	0.381	0.369	0.358	0,348
	0.20	0,488	0.477	0.466	0.454	0.441	0.429	0.417	0.405	0.394	0.383	0.372
	0,22	0,505	0. ±95	0.48.	0.473	0.461	0. ++ 9	0.457	0, +26	0. +15	0,404	0.394
	0.24	0.519	0.509	0.499	0.488	0.4477	0.406	0.455	0.444	0.+34	0. + 23	0.413
	0.26	0.529	0.520	0.511	0.501	0.491	0.480	0.470	0.460	0.450	0.440	0.431
	0.28	0.537	0,529	0,521	0.512	0.502	0,493	0.485	0. +73	0.464	0. +53	0.446
	0.30	0.544	0.536	0.525	0.521	0.015	0.503	0.494	0. +85	0	0.467	0.459
	0.32	0.549	0.543	0.536	0.528	0.5%0	0.512	0.504	0. +95	0.487	0.479	0.471
	0.34	0.503	0. 341	0.541	0,534	0.521	0.519	0.512	0.504	0. + 96	0 39	0,481
	0.36	0.557	0.552	0.546	0.540	0.533	0 . ⊃≿6	0.519	0.512	0,505	0.498	0.491
	0.38	0,560	0.555	0.550	0.544	0.538	0.532	0.520	0.519	0.512	0.505	0.499
	0.40	0.563	0.558	0.553	0,548	0.5+3	0.537	0.531	0.525	0.518	0.512	0.506
	0, 42	0,565	0,561	0.557	0.552	0.547	0.541	0.506	0.530	0.524	0.218	0.513
	0.44	0.561	0.563	0.559	0,555	0.550	0.5-15	0.5.10	0.535	0.529	0.524	0.519
	0,46	0.56 ະ	0,565	0.562	0,558	0.553	0.549	0.5+++	0.539	0.534	0.529	0.524
	0,48	0.540	0.567	0.564	0,560	0.556	0.552	0.547	0.542	0.528	0.553	0.528
	0.50	0.572	0.569	0.566	0.562	ა. 558	0,55+	0,550	0,546	0,541	0.537	0,533

ation of the coordinates, $\sigma(r)$, and the general temperature coefficient, B, calculated from the relationship

$$R = \frac{\int_{0}^{S_{\max}} 4\pi s^2 R(\sigma, s) f(s) \exp(-Bs^2/4) ds}{\int_{0}^{S_{\max}} 4\pi s^2 f(s) \exp(-Bs^2/4) ds}$$

where the integrals are taken over the range of $s = 2 \sin \theta / \lambda$ limited by the sphere of reflection of Cu $K\alpha$ radiation and f(s) is the scattering factor for carbon atoms of the type proposed by Vand, Eiland & Pepinsky (1957).

Using the expression $\delta \sigma = \frac{|\Delta r_N|^2}{2N\sigma}$ given by Stanley (1964)

and the values of σ and $dR/d\sigma$ from the tables corresponding to the observed values of R a comparison can be made between the theoretical reduction in R as the refinement progresses and that observed in practice. The example used is that of a problem with six atoms in the asymmetric unit (space group $P2_1/c$) whose structure has been determined and refined by Dr G. Germain (private communication).

Acta Cryst. (1965). 18, 1087

Table 3 gives the details of the progress in refinement in one typical cycle. The agreement, for a six-atom problem, is reasonably good.

Table 3.	Progress of refinement in a typical	cycle
	Luidial malue of D 24 705 8/	

Initial value of $R = 24.705 \%$								
Atom No.	$ \Delta r_N $	R	ΔR obs.	ΔR calc.				
1	0·10 Å	24·007 %	0·698 %	0.686 %				
2	0.15	22.109	1.898	1.711				
3	0.05	21.973	0.136	0.191				
4	0.16	18.013	3.960	2.311				
5	0.07	17.895	0.118	0.462				
6	0.05	17.692	0.203	0.232				

References

BHUIYA, A. K. & STANLEY, E. (1963). Acta Cryst. 16, 98. LUZZATI, V. (1952). Acta Cryst. 5, 802.

STANLEY, E. (1964). Acta Cryst. 17, 1028.

VAND, V., EILAND, P. F. & PEPINSKY, R. (1957). Acta Cryst. 10, 303.

The Fourier transform of the coiled-coil model for a-keratin. A correction. By R. D. B. FRASER, T. P. MACRAE and A. MILLER. Division of Protein Chemistry, C.S.I.R.O., Wool Research Laboratories, Parkville N. 2, Victoria, Australia

(Received 29 December 1964)

References

In a recent communication (Fraser, MacRae & Miller, 1964) atomic coordinates were given for the asymmetric unit of the coiled-coil model for a-keratin. An error has since been discovered in a computer routine used to list these coordinates, and Table 2 in the original communication should be replaced by the following. The routine was not used in the Fourier-transform calculations.

FRASER, R. D. B., MACRAE, T. P. & MILLER, A. (1964). Acta Cryst. 17, 813.

114.88

115.44

Table 2

(a) Atomic coordinates of asymmetric unit in a coiled-coil with $r_0 = 5.2$ Å (Oz = major helix axis)

(u) monine coordin	ates of asym	meene amen	i u comeu com m				
	x	у	Z		x	У	Z
β –C(1)	8.400	0.000	0.000	C(4)	6.487	0.182	4.180
$\alpha - C(1)$	7.350	0.887	- 0.697	O(4)	6.466	0.683	3.040
N(1)	6.242	1.151	0.233	β –C(5)	7.541	0.990	6.338
C (1)	5.090	1.658	-0.155	$\alpha - C(5)$	6.282	1.040	5.456
O (1)	4.804	1.974	-1.312	N(5)	5.135	0.211	6.202
$\beta - C(2)$	4.636	2.845	2.016	C(5)	3.992	0.191	5.633
$\alpha - C(2)$	4.082	1.843	0.998	O(5)	3.742	0.301	4.437
N(2)	3.855	0.547	1.636	β –C(6)	2.583	0.753	7.621
C(2)	3.634	-0.563	0.966	$\alpha - C(6)$	2.939	-0.342	6.618
O(2)	3.577	-0.647	-0.256	N(6)	3.487	- 1.509	7.305
$\beta - C(3)$	2.169	- 1.591	2.712	C(6)	4.114	-2.488	6.691
$\alpha - C(3)$	3.424	- 1.795	1.864	O(6)	4.302	- 2.547	5.473
N(3)	4.598	- 1.960	2.721	$\beta - C(7)$	3.383	- 4.259	8.317
C(3)	5.835	- 1·893	2.275	$\alpha - C(7)$	4.595	- 3.602	7.647
O(3)	6.149	- 1.693	1.089	N(7)	5.469	- 3.009	8.666
$\beta - C(4)$	6.748	- 3.509	3.996	C(7)	6.438	<i>−</i> 2·164	8.376
$\alpha - C(4)$	6.892	-2.101	3.392	O(7)	6.727	- 1.778	7.225
N(4)	6.679	-1.095	4•444				
(b) Bond lengths an	nd angles in	a coiled-coil	compared with v	alues in an undisto	rted α-helix.		
Bond	Maximum	Undistorted	Minimum	Angle	Maximum	Undistorted	Minimum
βC–αC	1.541	1.535	1.527	$\beta C - \alpha \tilde{C} - N$	110.57	109.91	109.31
αC-N	1.471	1.465	1.461	$\alpha C - N - C^*$	123.65	123.16	122.71
N-C*	1.318	1.317	1.315	N-C*-O*	125-27	125.00	124.66
C-0	1.248	1.237	1.226	$O-C-\alpha C$	122.44	121.79	121.08
C-aC	1.555	1.546	1.537	$C - \alpha C - \beta C$	110.27	109.75	109-21
$N \cdots O^{\dagger}$	2.864	2.841	2.812	$N-C^*-\alpha C^*$	113.71	113.21	112.70
				$C \sim C N$	108.0/	108.86	108.74

† Hydrogen-bonded atoms. * Indicates next residue.

 $C^{*}-N \cdots O^{\dagger}$

116.00